#### **SENSOR:**

#### Smart Embedded Network of Sensors with Optical Readout

#### **Project Team and Key Personnel**



Globally renowned research center in The Business of Breakthroughs®

- Ajay Raghavan (PI)\*
- Peter Kiesel
- Bhaskar Saha
- Saroj Sahu
- Noble Johnson
- Rob McHenry



Industry-leading EV battery systems
Supplying Tomorrow's Energy Storage
Solutions... Today

- Mohamed Alamgir
- Martin Klein
- Jeffrey West
- Bob Murching



\*Email: raghavan@parc.com



### Fiber Optic Sensors for Internal Cell State





- Multiplexed fiber optic (FO) sensors a promising option for internal cell monitoring:
  - Thin, light-weight, robust to harsh environments, EMI
  - Can measure various BMS-relevant internal cell parameters
- Commercial FO readouts typically bulky, expensive
- Use PARC's breakthrough low-cost, field-deployable
   FO readout and intelligent algorithms for BMS





### **SENSOR** Overview



#### **Technology**

- Fiber optic (FO) monitoring system combines embedded sensors and smart algorithms
- PARC-created optical readout ideally suited for battery monitoring
- Intelligent algorithms exploiting sensor network for effective BMS
- LGCPI's manufacturing/validation expertise to ensure EV-grade tech

#### **Advantages/Differentiation**

- EV batteries expensive today:
  - −Only use external V, i, T readings
  - Very conservative design/safety approaches to compensate
- PARC's low-cost, compact embedded fiber optic sensing to monitor internal cell state during operation
- Allow designers to more fully, safely use battery's true capabilities





## Performance Targets and Validation Plan

| Metric                    | State-of-the-art                  | Targets of Proposed SENSOR Technology           |                                                |
|---------------------------|-----------------------------------|-------------------------------------------------|------------------------------------------------|
| Internal cell temperature | Up to 30°C (from cell skin temp.) | Internal cell temp.<br>monitoring: 1°C accuracy | Compared against numerical cell models         |
| soc                       | 5%                                | 2.5% accuracy                                   | Validated experimentally                       |
| Side-reaction monitoring  | No internal sensing               | Adverse chemical HF detection up to 50 ppm      |                                                |
| Cost                      | Battery oversizing                | >25% reduction with 3 to 7% cost overhead (OH)  | Technoeconomic cost-performance model to check |
| Performance overhead      | No internal sensing               | <0.05% energy density, volume & weight OH       |                                                |

#### Industry-standard testing w/ LGCPI's EV-grade cells:

- Seal integrity of cells with embedded FO sensors
- Static, dynamic SOX estimation using SENSOR system
- Charge cycling repeatability, environmental stability
- Seeded fault detectability tests





# Requests of AMPED Community

- EV OEMs: requirements for SENSOR tech?
- Internal cell parameters of interest
- Concerns, suggestions, pitfall warnings
- Validation strategy suggestions for internal cell temperature measurement
- How do these advanced BMS needs map out in other challenging domains, e.g.:
  - Electric grid storage
  - Aerospace
  - Military



